Marine, freshwater and aerially acclimated mangrove rivulus (Kryptolebias marmoratus) use different strategies for cutaneous ammonia excretion.
نویسندگان
چکیده
Rhesus (Rh) glycoproteins are ammonia gas (NH(3)) channels known to be involved in ammonia transport in animals. Because of the different osmoregulatory and ionoregulatory challenges faced by teleost fishes in marine and freshwater (FW) environments, we hypothesized that ammonia excretion strategies would differ between environments. Also, we hypothesized that cutaneous NH(3) volatilization in air-acclimated fish is facilitated by base secretion. To test these hypotheses, we used the skin of the euryhaline amphibious mangrove rivulus (Kryptolebias marmoratus). The skin excretes ammonia and expresses Rh glycoproteins. Serosal-to-mucosal cutaneous ammonia flux was saturable (0-16 mmol/l ammonia, K(m) of 6.42 mmol/l). In FW, ammonia excretion increased in response to low mucosal pH but decreased with pharmacological inhibition of Na(+)/H(+) exchangers (NHE) and H(+) ATPase. Conversely, in brackish water (BW), lowering the mucosal pH significantly decreased ammonia excretion. Inhibitors of NHE also decreased ammonia excretion in BW fish. Immunofluorescence microscopy demonstrated that both the Rh isoform, Rhcg1, and NHE3 proteins colocalized in Na(+)/K(+) ATPase expressing mitochondrion-rich cells in the gills, kidney, and skin. We propose that the mechanisms of cutaneous ammonia excretion in FW K. marmoratus are consistent with the model for branchial ammonia excretion in FW teleost fish. NH(4)(+) excretion appeared to play a stronger role in BW. NH(4)(+) excretion in BW may be facilitated by apical NHE and/or diffuse through paracellular pathways. In aerially acclimated fish, inhibition of NHE and H(+) ATPase, but not the Cl(-)/HCO(3)(-) exchanger, significantly affected cutaneous surface pH, suggesting that direct base excretion is not critical for NH(3) volatilization. Overall, K. marmoratus use different strategies for excreting ammonia in three different environments, FW, BW, and air, and Rh glycoproteins and NHE are integral to all.
منابع مشابه
Effects of Temperature on Gene Expression and Sex Determination in the Mangrove Rivulus, Kryptolebias Marmoratus
Title of Document: EFFECTS OF TEMPERATURE ON GENE EXPRESSION AND SEX DETERMINATION IN THE MANGROVE RIVULUS, KRYPTOLEBIAS MARMORATUS Jennifer Strykowski, Master of Science 2011 Directed by: Assistant Professor Dr. Edward F. Orlando, Department of Animal and Avian Sciences Rivulus is a hermaphroditic, self-fertilizing fish species that possesses an ovotestis and, in the wild, exist as androdioeci...
متن کاملRhesus glycoprotein gene expression in the mangrove killifish Kryptolebias marmoratus exposed to elevated environmental ammonia levels and air.
The mechanism(s) of ammonia excretion in the presence of elevated external ammonia are not well understood in fish. Recent studies in other organisms have revealed a new class of ammonia transporters, Rhesus glycoprotein genes (Rh genes), which may also play a role in ammonia excretion in fish. The first objective of this study was to clone and characterize Rh genes in a fish species with a rel...
متن کاملPopulation genetics and evolution of the mangrove rivulus Kryptolebias marmoratus, the world's only self-fertilizing hermaphroditic vertebrate.
The mangrove rivulus, Kryptolebias marmoratus (Rivulidae, Cyprinodontiformes), is phylogenetically embedded within a large clade of oviparous (egg laying) and otherwise mostly gonochoristic (separate sex) killifish species in the circumtropical suborder Aplocheiloidei. It is unique in its reproductive mode: K. marmoratus is essentially the world's only vertebrate species known to engage routine...
متن کاملRapid increase in the partial pressure of NH3 on the cutaneous surface of air-exposed mangrove killifish, Rivulus marmoratus.
Mangrove killifish, Rivulus marmoratus, are tolerant of prolonged periods of air exposure (>30 days). Air-exposed R. marmoratus eliminate more than 40% of their total ammonia through NH(3) volatilization; however, the sites and mechanisms are unclear. We hypothesized that the cutaneous surface is an important site of NH(3) volatilization in air-exposed R. marmoratus. Ion-selective microelectrod...
متن کاملPhenotypic plasticity and integration in the mangrove rivulus (Kryptolebias marmoratus): a prospectus.
The mangrove rivulus (Kryptolebias marmoratus) is a small fish native to mangrove ecosystems in Florida, the Caribbean, Central America, and South America. This species is one of only two self-fertilizing, hermaphroditic vertebrates capable of producing offspring that are genetically identical to both the parent and all siblings. Long bouts of selfing result in individuals with completely homoz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 304 8 شماره
صفحات -
تاریخ انتشار 2013